MATH4050 Real Analysis Assignment 5

There are 9 questions in this assignment. The page number and question number for each question correspond to that in Royden's Real Analysis, 3rd or 4th edition.

✗1. (3rd: P.70, Q19)

Let D be a dense set of real numbers, that is, a set of real numbers such that every interval contains an element of D. Let f be an extended real-valued function on \mathbb{R} such that $\{x: f(x) > \alpha\}$ is measurable for each $\alpha \in D$. Show that f is measurable.

 $2 \stackrel{\cancel{\ \ }}{\cancel{\ \ }} (3rd; P.70, Q20; 4th; P.63, Q19 and P.64 Q20)$

Show that the sum and product of two simple functions are simple. Show that for any $A, B \subset \mathbb{R}$,

$$\chi_{A \cap B} = \chi_A \cdot \chi_B$$
$$\chi_{A \cup B} = \chi_A + \chi_B - \chi_{A \cap B}$$
$$\chi_{\widetilde{A}} = 1 - \chi_A.$$

(Note: $\widetilde{A} = \text{complement of } A$)

3. (3rd: P.71, Q23)

Prove Proposition 22 (3rd ed.) by establishing the following lemmas:

- a. Given a measurable function f on [a,b] that takes the values $\pm \infty$ only on a set of measure zero, and given $\varepsilon > 0$, there is an M such that $|f| \leq M$ except on a set of measure less than $\frac{\varepsilon}{3}$.
- b. Let f be a measurable function on [a,b]. Given $\varepsilon > 0$ and M, there is a simple function φ such that $|f(x) \varphi(x)| < \varepsilon$ except where $|f(x)| \ge M$. If $m \le f \le M$, then we may take φ so that $m \le \varphi \le M$.
- c. Given a simple function φ on [a,b], there is a step function g on [a,b] such that $g(x)=\varphi(x)$ except on a set of measure less than $\frac{\varepsilon}{3}$. [Hint: Use Proposition 15 (3rd ed.).] If $m \leq \varphi \leq M$, then we can take g so that $m \leq g \leq M$.
- d. Given a step function g on [a,b], there is a continuous function h such that g(x)=h(x) except on a set of measure less than $\frac{\varepsilon}{3}$. If $m\leq g\leq M$, then we may take h so that $m\leq h\leq M$.

Proposition 15 is the Littlewood's first principle (See lecture notes Ch3 P.12-13).

Proposition 22: Let f be a measurable function defined on an interval [a,b], and assume that f takes the value $\pm \infty$ only on a set of measure zero. Then given $\varepsilon > 0$, we can find a step function g and a continuous function h such that

$$|f-g|<\varepsilon$$
 and $|f-h|<\varepsilon$

except on a set of measure less than ε ; i.e. $m(\{x:|f(x)-g(x)|\geq \varepsilon\})<\varepsilon$ and $m(\{x:|f(x)-h(x)|\geq \varepsilon\})<\varepsilon$. If in addition $m\leq f\leq M$, then we may choose the functions g and h such that $m\leq g\leq M$ and $m\leq h\leq M$.

4. (3rd: P.71, Q24; 4th: P.59, Q7)

Let f be measurable and B a Borel set. Show that $f^{-1}[B]$ is a measurable set. [Hint: The class of sets for which $f^{-1}[E]$ is measurable is a σ -algebra.]

* 5. (3rd: P.71, Q25; 4th: P.59, Q10)

Show that if f is a measurable real-valued function and g a continuous function defined on $(-\infty, \infty)$, then $g \circ f$ is measurable.

[★] (3rd: P.73, Q29)

Given an example to show that we must require $m(E) < \infty$ in Proposition 23 (3rd ed.).

Proposition 23 is the claim (*) in the proof of Egoroff's theorem in the lecture notes (Ch3, P.25), except the pointwise convergence a.e. on E is replaced by pointwise convergence on E.

7. (3rd: P.73, Q30)

Prove Egoroff's Theorem.

* (3rd: P.74, Q31)

Prove Lusin's Theorem: Let f be a measurable real-valued function on an interval [a,b]. Then given $\delta > 0$, there is a continuous function φ on [a,b] such that $m(x:f(x) \neq \varphi(x)) < \delta$. Can you do the same on the interval $(-\infty,\infty)$?

9. (3rd: P.74, Q32)

Show that Proposition 23 (3rd ed.) (See Question 6) need not be true if the integer variable n is replaced by a real variable t; that is, construct a family $\{f_t\}$ of measurable real-valued functions on [0,1] such that for each x we have $\lim_{t\to 0} f_t(x) = 0$, but for some $\delta > 0$ we have $m^*(\{x: f_t(x) > \frac{1}{2}\}) > \delta$.